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ABSTRACT. The number of clines (i.e., nonconstant equilibria) maintained by
viability selection, migration, and partial global panmixia in a step-environment
with a geographical barrier is investigated. Our results extend the results of
T. Nagylaki (2016, Clines with partial panmixia across a geographical barrier,
Theor. Popul. Biol. 109) from the no dominance case to arbitrary dominance
and to various other selection functions. Unexpectedly, besides the usual mono-
tone clines, we discover nonmonotone clines with both equal and unequal limits
at doco.

1. Introduction. The term cline was first coined by the English evolutionary bi-
ologist Julian Huxley in 1938, which describes a continuous gradient of gene fre-
quencies, genotypic frequencies, or phenotypic frequencies of a species across its
geographical range. Since the formation of clines is closely related to species adap-
tation, speciation, and the maintenance of genetic variability, the study of clines
has been an important research subject in population genetics, ecology, and related
fields.

In PDE models on the evolution of gene frequencies, clines are nonconstant
equilibrium solutions. The general cline theory of regular migration-selection model
can be found in a series of systematic studies by Lou and Nagylaki [8, 9, 10]; in
the review papers by Nagylaki and Lou [17], Lou et al. [11], and Biirger [1]; and in
recent works by Hofbauer and Su [5, 6], Nakashima [22, 23, 24], Sovrano [26], and
Feltrin and Sovrano [2, 3].

The effect of long-distance migration can be approximated by partial global pan-
mixia (global random mating), which adds an integral term in the regular migration-
selection model, and makes it nonlocal [14, 15]. Further works in this direction are
Lou et al. [12], Nagylaki et al. [18], Nagylaki and Zeng [20, 21], Su and Nagylaki
[27], and Li et al. [7].

A geographical barrier that divides a habitat into two often occurs in nature such
as a mountain chain, a river, or a railway. However, relatively little cline theory
has considered this factor; see, e.g., Nagylaki [13] and the references therein. An

2010 Mathematics Subject Classification. 35K57, 92D10, 35A01, 35A02, 35A24.
Key words and phrases. Migration, selection, global panmixia, geographical barrier, cline.
* Corresponding author: sull@sustech.edu.cn.

4019


http://dx.doi.org/10.3934/dcds.2020056

4020 YANTAO WANG AND LINLIN SU

obvious distinction is that clines will be discontinuous at a barrier. The spread of
an advantageous allele may also be delayed by a barrier [25].

In the pioneer work [16], Nagylaki derived a new model that includes all of
the above features, namely, a single-locus migration-selection model with partial
panmixia in the presence of a geographical barrier. In particular, he deduced an
explicit formula for the unique cline, which is monotone, under the assumptions of
two alleles without dominance, a step-environment, and homogeneous and isotropic
local migration on the entire line.

The purpose of this paper is to generalize Nagylaki’s analysis in [16] from the no
dominance case to arbitrary dominance, and to various other selection functions.
In previously studied models, clines maintained by a step-environment are usually
monotone [4, 27, 16]. Surprisingly, for a certain range of degree of dominance, we
discover the existence of nonmonotone clines maintained by a step-environment.
Our results shed some light on the interaction of these evolutionary factors on
clines, especially the joint effects of degree of dominance, partial panmixia, and
geographical barrier.

In Section 2, we formulate the model (1) and introduce some preliminary prop-
erties. We present our results on clines of (1) in Section 3 for the case p_ < py; the
main results are Theorems 3.1, 3.4, 3.7, 3.8, 3.11, and 3.12. Section 4 is devoted
to the case p_ = p;; the main results are Theorems 4.1 and 4.3. In particular,
the existence of nonmonotone clines is established in Theorems 3.11 and 4.3. We
summarize our results and discuss open problems in Section 5.

2. The model problem and preliminary properties. Here, we briefly recapit-
ulate the formulation in [16, Sect.4]. Assume that the gene under consideration is
at a single-locus with two alleles A; and As. The diploid population occupies the
entire line R. Under the joint action of viability selection, local adult migration,
and partial panmixia with a geographical barrier at * = 0, Nagylaki derived the
following equation for the frequency of A; at equilibrium [16]:

P +g(@)f(p)+B6(F—p) =0, zecR\{0}, (1a)

px = p(£00), (1b)

p'(£o00) = 0, (1c)

p(0%) = 046, (1d)
where

p= %(p— +p4), (le)

6 = p(0+) — p(0—). (1f)

In (1a), g(z)f(p) designates the effect of selection on allele A;. If the fitness of
genotype A;A;, denoted by r;; for ¢,j = 1,2, is independent of gene frequency, one
may assume

ri1=g(x), T2 =721 = hg(x), 7122 =—9(T), (2)
where the constant h € [—1,1] is the degree of dominance. When h = 0, h = —1,
and h = 1, there is no dominance, As is completely dominant to A, and A, is
recessive, respectively. Under (2), the selection function f reads

f(p) = p(1 = p)(1+ h —2hp). (3)
The spatial factor g(z) specifies the direction of selection, i.e., at location z, allele
A; (Ag) is selectively favored if g(z) > 0 (< 0).
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In this paper, following [16], we focus on a step-environment, i.e.,

o) = {‘a Loy @

1 if x>0,

where the parameter a@ > 0 measures the relative strength of negative selection to
positive selection. Note that this step-environment applies also to a plane habitat
of two types that is divided by a linear boundary, and x is the directed distance of
any point from this boundary.

In general, directional selection functions satisfy

fec'((o,1), fO)=f1)=0, f(p)>0 in (0,1). (5)

In [19] and [27], the unimodality of f emerged as a crucial simplifying assumption,
ie.,

3pe(0,1) s.t. fis strictly increasing & decreasing in (0,p) & (p,1), resp., (6)

which is applied also in this paper. In particular, the cubic f in (3) is unimodal.

The term B[p — p(z)] in (1a) describes the effect of long-distance migration. It
means that at location z, a portion of population is replaced by the “averaged”
population over the habitat due to panmixia. The parameter S > 0 is the scaled
panmictic rate; a larger 8 means a larger portion of the population is pamictic. The
term p’’ represents the effect of population local migration, whose rate is scaled out.

The discontinuities of p(z) and p'(z) at x = 0 are due to a geographical barrier
there. They satisfy the transmission conditions (1d,f). The parameters 6+ > 0
are the scaled transmissivities crossing the barrier from left to right and from right
to left, respectively. Smaller 61 corresponds to a stronger barrier. In particular,
0+ — 0 and 64 — oo show that the barrier becomes impenetrable and the barrier
disappears, respectively.

The following Proposition 1 and Theorem 2.1 were proved by Nagylaki [16].

Proposition 1. ([16, Proposition 4.2]) If (1a,b,e), (4), and (5) hold, then
(i) p"(d00) = 0;
(i)
1
fps) = af(p-) = 58+ —p-); (7)
(iii) 0 < p— < p4 < 1 except for the trivial solutions p— = py =0 and p_ = py = 1.

In the absence of both frequency dependence and dominance, i.e., h = 0 in (3),
the selection function has the simplest form

f(p) =p(1—p). (8)
For every a > 0, define the critical panmictic rate as
2c if 1
Bola) = {Ia—u if a # 1, )
00 if a=1.
Theorem 2.1. ([16, Proposition 4.6 and Th.4.8]) Suppose that (4) and (8) hold.
If a >0, B €(0,5), and 61+ > 0, then (1) has a unique cline p(z) € C*(R\ {0}),
which satisfies (i ) p— < p(z) < py inR, (i) p'(z) > 0 in R\ {0}, and (iii) p"(z) =

ifx < 0.
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The existence and uniqueness in Theorem 2.1 were proved by tedious calculations
that verify the sign and number of roots of many involved polynomials, relying
crucially on the special form (8). In the next section, we mainly use phase-plane
analysis to generalize Theorem 2.1 from (8) to a much wider class of selection
functions.

3. Clines with p_ < p; . We establish the existence, uniqueness, multiplicity,
monotonicity, and non-monotonicity of clines for problem (1) with various selection
functions f. According to Proposition 1(iii), the gene frequencies at oo satisfy
either 0 < p_ < py <1,p_ =py =0, or p_ = py = 1. In this section, we will
focus on clines with p_ < p4, and treat the latter two cases in Section 4. We state
our results for « = 1 and o > 1 in Sections 3.1 and 3.2, respectively. The case
a < 1 can be converted to the case « > 1 by considering the equation of 1 — p(—z);
see [27, Sect.7.2.3] for more details regarding this transformation.
The following functions play important roles in our proofs.

F(p) = / " 1e) de. (10)

Y (p.q) = 30" + F(p) — 5600~ 9)" ()
Hy (p.0) = 3¢ — aF(p) — 550~ D), (12

and
®o_0, (p,4) = (p+ 54, 7=0). (13)

3.1. @ =1. Theorem 3.1 is the main result of this section, which generalizes The-
orem 2.1 for &« =1 from p(1 — p) to unimodal selection functions.

Theorem 3.1. If o = 1 and the assumptions (4)—(6) hold, then for every S > 0
and every 0+ > 0, problem (1) has a unique cline p(z) € C*(R\{0}) with0 < p_ <
py < 1, which satisfies (i) p— < p(z) < py in R, (ii) p'(z) > 0 in R\ {0}, and (iii)
p'(z) 20ifzs0.

To prove Theorem 3.1, we need the following two results.

Theorem 3.2. ([27, Th.8.2]) The assumptions a = 1, (5), and (6) imply that for
every > 0, the system (7) has a unique solution pair py with 0 < p_ < p; < 1.

Lemma 3.3. ([27, Lemma 7.9 and Fig.1]) Under the assumptions in Theorem 3.2,
for every solution pair 0 < p_ < py <1 of (7) and the corresponding p as in (le),
it holds that

flp)=B(p—p)>0 Vpe(0,p4), (14a)
f(p)=Blp—p) <0 Vpe(p,1), (14b)
af(p)+B(p—-p) <0 Vpe(0,p-), (14c)
af(p) +B(p—p) >0 Vpe(p-,1). (14d)

Proof of Theorem 3.1. For every 8 > 0, let p+ be as in Theorem 3.2. Let q = p'.
For x > 0, by (4), we write (1a) as the equivalent system

' =q,
{ ¢ =—f(p)+B(—p), >0, (15)
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(a) Graph of C™. (B) Graph of C™.
FIGURE 1

which is Hamiltonian with energy function H*(p,q) as in (11). From (11) and
(14a,b) we have the following observations.
(a) H* is an even function of q.

(b) .
5 (p.0) =5 0 for g S0 (16)
(©
OHT B [ >0 Vpe(0,p4),
) =10 -5 -n{ 20 yP T (1

Then one can easily draw in the pg-plane the phase portrait for system (15).
Fig.1(A) shows the solutions that lie in the level H*(py,0). In light of the boundary
conditions (1b,c), the solid arcs tending to (p4,0) as © — oo, as indicated by the
arrow heads, are of special interest. They are labeled by C* in Fig.1(A).

For x < 0, by (4), we write (la) equivalently as

P=q
{¢=aﬂm+5@—mvw<ﬁ 1e)
which is Hamiltonian with energy function H; (p, q) as in (12) for &« = 1. From (12)
and (14c,d) we have the following observations.
(d) Hy is an even function of g.
()
OHy
9q

(p,q) =qs0forgs0. (19)

0
== -se-n{ 20 JET) (20

Then one can easily draw in the pg-plane the phase portrait for system (18).
Fig.1(B) shows the solutions that lie in the level H; (p_,0). In light of the boundary
conditions (1b,c), the solid arcs emanating from (p_,0) as * — —o0, as indicated
by the arrow heads, are of special interest. They are labeled by C'~ in Fig. 1(B).

To meet the transmission conditions (1d,f), we utilize the map ®g_ 4, in (13).
Write p1 = p(0+) and ¢+ = ¢(0£). Then (1d,f) are equivalent to

(P+,04+) = Po_ 0. (D—,qG-). (21)
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(A) C~ and q’gi’ng(C_). (B) C+, C™, and CI)9779+(C_).
FIGURE 2
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(A) Monotone cline. (B) Nonmonotone cline.

FIGURE 3

From (13) we see that ®y_ g, (p—,0) = (p—,0); ®y_, maps points on C~ one-
to-one to points on ®g_ 4, (C~), the dashed curves in Fig.2(A), which keeps the
monotonicity of C'~.

Now superimposing C'T and the phase portraits in Fig. 2(A), one obtains a unique
point of intersection of C with ®y_ 4, (C7), denoted by A. Let B be the unique
preimage of A under ®_4,. Thus, we obtain a unique cline p(x) of (1) that
connects the p_ and p, at infinity, which corresponds to the path

from (p_,0) to B along C~, from B jumping to A, from A to (py,0) along C™.

Finally, observe that p’ = ¢ > 0 on this path, p” = ¢ > 0 until point B
(corresponding to z < 0), and p” = ¢’ < 0 after point A (corresponding to x > 0).
These demonstrate Theorem 3.1(i)-(iii). O

We draw a typical cline p(z) guaranteed by Theorem 3.1 in Fig. 3(A), in which
p+ are the p-coordinate of points B and A in Fig. 2(B), respectively.

Remark 1. For a = 1, Theorem 3.1 generalizes Theorem 2.1 from (8) to general
unimodal f. In particular, it applies to the cubic (3) for h € [-1,1].

3.2. a > 1. In this section, we focus on unimodal f with a maximum value achieved
at p, which is either concave down on the left of p or has one point of inflection
there.

Define

B = [F(0)]. (22)
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Note that the 8y in (9) agrees with 8, when o > 1 and f(p) = p(1 — p).

Theorem 3.4. Suppose that a > 1, the assumptions (4)—(6) and f(p) € C?([0, p])
hold. If

f'(p) <0 in (0,p), (23)
then for every 8 € (0, 8.) and every 61 > 0, problem (1) has a unique cline with
0 < p_ < pg <1, which is strictly increasing; no cline with 0 < p_ < p; < 1 exists
if B> B

To prove Theorem 3.4, we need the following two results in [27].

Theorem 3.5. ([27, Th.8.3(1)]) The assumptions o > 1, (5), (6), and f(p) €
C2([0,p]) with (23) imply that system (7) has a unique solution pair py with 0 <
p— < py <1 for every 8 € (0, Bs) and only trivial solutions for every 8 > B..

Lemma 3.6. ([27, Lemma 7.12 and Fig.2]) Under the assumptions in Theorem 3.5,
for every nontrivial solution pair px of (7) and the corresponding p as in (le), the
inequalities in (14) hold.

(Notice that the assumptions on f in Theorem 3.5 imply (7.40) in [27, Lemma
7.12].)

Proof of Theorem 3.4. The proof is exactly the same as the one of Theorem 3.1
with minor modifications, i.e., replacing H; by H; and applying Theorem 3.5 and
Lemma 3.6 instead of Theorem 3.2 and Lemma 3.3. O

Remark 2. Theorem 3.4 applies to the cubic (3) if and only if h € [-1/3,1].

Condition (23) says that f is concave down on the left of its maximum p. Next,
we discuss the case that f has one inflection point on the left of p, i.e., there exists
p € (0,p) such that

f"(p) >0 in[0,p) and f"(p) <0 in (p,p). (24)
In this case, as explained in Remark 3, the phase portrait of (18) remains the same

as in Fig. 1(B). However, we will see that the phase portrait of (15) can be much
more complicated than in Fig. 1(A) as shown in Figs. 4(B), 5(B), and 7.

Remark 3. For o > 1 and unimodal f with maximum value achieved at p, the
proof of Lemma 7.12 (especially, Cases 1 and 3) in [27] shows that p_ is the unique
zero of [af(p) + B(p — p)] in (0,1), which implies that (14c,d) hold. Then the
arguments for x < 0 in the proof of Theorem 3.1 apply, and the phase portrait of
system (18) is as in Fig. 1(B).

Remark 4. For o > 1 and unimodal f that satisfies (24), the graph of f(p) and
the line

L(p) == B(p—p) (25)
may have up to m = 3 intersection points in (0,1). First, we consider m = 1, 2.
(i) m = 1: The unique intersection point has to be p; and it is clear that (14a,b)
hold from the geometry of f and L. Then the arguments for £ > 0 in the proof
of Theorem 3.1 apply, and the corresponding phase portrait of system (15) is as in
Fig. 1(A).
(ii) m = 2: We order the two intersection points as p; and ps with p; < po; then
p1 < P < pg and L is tangent to f at either p; or ps. Figs. 4 and 5 show L and f
with the corresponding phase portraits of system (15) for the tangent point being
p1 and po, respectively. There are four possibilities.
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(a) Fig.4 with p; = p;: The orbit tending to p4 in Fig. 4(B) is qualitatively the
same as in Fig. 1(A).

(b) Fig. 4 with p; = po: Same as (a).

(c) Fig. 5 with py = p1: Same as (a).

(d) Fig. 5 with py = pa: The orbit tending to py in Fig. 5(B) is below ¢ = 0, which
has no point of intersection with ®y_ g, (C7) (see Fig.2(B)); thus no cline exists.

Gon N
BN

(a) (®)

FIGURE 4. A sketch of the situation in Remark 4(ii); where (A)
shows that the straight line 5(p —p) is tangent to the graph of f(p)
at p1, and (B) shows the corresponding phase portraits of (15).

B(p — p) !
f(p) 0 >@1 P
0 ﬁl p? 1 p
(a) (B)

FIGURE 5. Same as Fig. 4 except that the straight line S(p — p) is
tangent to the graph of f(p) at po.

In light of Remarks 3 and 4, the same arguments as in Theorem 3.1 immediately
yield the following Theorems 3.7 and 3.8.

Theorem 3.7. Suppose that (4)—(6) and (24) hold. Assume o > 1, § > 0, py
is a nontrivial solution pair of (7) and determines p as in (le), and the function
[f(p) — B(p — p)] has a unique zero in (0,1). Then for every 6+ > 0, problem (1)
has a unique solution, which is strictly increasing.

Theorem 3.8. Suppose that (4)—(6) and (24) hold. Assume oo > 1, f > 0, py
is a nontrivial solution pair of (7) and determines p as in (le), and the function
[f(p) — B(p — p)] has exactly two zeros py < pa in (0,1).

(i) In every case of Remark 4(iia,b,c), for every 6+ > 0, problem (1) has a unique
solution, which is strictly increasing.

(ii) If Remark 4(iid) applies, then for any 01 > 0, problem (1) has no solution.
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B(p —p)

f(p)

0 P1 P2 D3 1 p

FIGURE 6. Graph of f(p) and the straight line S(p — p) if m = 3.

Second, we discuss the case that the function [f(p) — B8(p — p)] has m = 3 zeros
in (0,1) as shown in Fig. 6.

Remark 5. Since a concave up/down function can have at most two points of
intersection with a straight line, if f satisfies (5), (6), and (24) such that [f(p) —
B(p — p)] has three zeros p; < pa < ps, then p; € (0,p) and p3 € (p, 1).

Lemma 3.9. Suppose that f satisfies (5) and (6), and that for some fized 5 > 0
and p € (0,1), the function [f(p) — B(p — D)] has exactly three zeros p1, p2, and
p3 with 0 < py < pa < p3 < 1. Let I and II be the area surrounded by the graph
of f(p) and the straight line B(p — p) for p in (p1,p2) and (p2,ps), respectively, as
shown in Fig.6. Then the following conclusions hold:

() I <II <= H*(p1,0) < H*(ps,0),

(i) I =11 <= H*(p,0) = H"(p3,0),

(iii) I > I <= H*(p1,0) > H*(ps,0),

where HT is as in (11).

Proof. The proof is straightforward by (10) and (11):

-1 - f/mm@fﬂ@—mwﬂf]ﬂﬂ@f@@—@us

p1 P2

- /mwa—ﬂﬁ—M%—/%U@—B@—M%
0 0
= H+(p150)_H+<p370)a

from which (i)—(iii) follow. O

Lemma 3.10. Assume that the assumptions in Lemma 3.9 hold.

(i) If I < II, then the phase portrait of (15) is as in Fig. 7(A); there exists a ho-
moclinic orbit connecting the equilibrium (p1,0) with itself.

(ii) If I = II, then the phase portrait of (15) is as in Fig.7(B); there exist hetero-
clinic orbits connecting the equilibria (p1,0) and (ps3,0).

(iii) If I > II, then the phase portrait of (15) is as in Fig.7(C); there exists a
homoclinic orbit connecting the equilibrium (ps,0) with itself.
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q q

q
P D2 Mo/ 1 P O[p D2 31 pro[» ()\p_z/\g:}\l P

(A) I <II (B) I =1II. (c) I>II.

FIGURE 7. Phase portraits of (15) in Lemma 3.10 with I < II,
I =11, and I > II, respectively; where I and II stand for the
areas enclosed by the graphs of L(p) and f(p) as shown in Fig. 6.

Proof. Observations (a) and (b) in the proof of Theorem 3.1 still hold, and obser-
vation (c) becomes

OH™* >0 Vpe(0,p1)U(p2,p3)
“h, W4T - -D ’ e 26
oo 00 = 1) =80 —p) { 70 JREGTI B g
Then according to the relation between H¥(py,0) and HT (ps3,0), or the equivalent
relation between I and II, in each case, one can easily draw in the pg-plane the
solution portraits that lie in these two levels for system (15). Note that the point
(po,0) in Figs. 7(A,C) is not an equilibrium. O

Following Fig. 7, we now discuss the cases p; = p; for i = 1,2, 3, respectively.
1. py =pi.

We first consider the case (A) I < IT in Fig.7. In fact, this is the only case that
may produce nonmonotone clines with p_ < p;. We make the following assumption.

(H1) Suppose that the assumptions in Lemma 3.9, I < II, p; = p; and p_ =
2p — p4+ > 0 hold.

Theorem 3.11. Suppose that (H1) holds and o > 1 such that af (p—) = f(p4).
Then

(i) for every 61 > 0, problem (1) has a unique monotone cline;

(ii) for every O_ > 0, there exists 6, > 0 such that problem (1) has zero and at least
two nonmonotone clines for 04 > 0, and 04 < 0., respectively.

Proof. In light of Lemma 3.10, under assumption (H1), the phase portraits of (15)
are as in Fig. 7(A) with p; = p.. We denote the curve with energy H™ (p4,0) by
CT and decompose it into
{Cr2}U{Co2}
={p.9)€CTq¢20,0<p<pi}U{(p.a) €CT|q20,py <p<po}. (27)
Recall Remark 3, for every 64 > 0, the phase portraits of (18) and the image
®y_ 9, (C7) are as in Fig.2(A). Superimposing them with {C} 4}, one obtains the
unique monotone cline exactly the same way as in the proof of Theorem 3.1. This
proves Part (i).
Now for each 6_ > 0, in light of (13), one may raise or lower the curve ®y_ 4. (C™)

by varying 6. Let 0, be the critical value such that ®g_ 4, (C~) does not intersect
Cy,+ if 64 > 0, and intersects C 4 at two or more points if 0 < 6 < 0,; Fig. 8 shows
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q

FIGURE 8. Superimposition of the phase portrait C~ of (18) and
its image under ®y_ g, with the phase portraits of (15).

two intersection points D; and Dy for example. For each such point of intersection
D;, we denote its unique preimage via ®y_ g, by E;, then the corresponding cline
p(z) of (1) has the path
(p—,0) = E along C~, E; jumping to D;, D; — (po,0) along C5 4,
(Po,0) to (p4,0) along Csy, .
Moreover, p’(z) > 0 until p(x) reaches its maximum value py, and p’(z) < 0 after-
wards. This completes the proof of Part (ii). O

A typical cline in Theorem 3.11(i) is qualitatively the same as in Fig. 3(A). We
exhibit a typical nonmonotone cline in Theorem 3.11(ii) in Fig. 3(B).
Next, we consider the cases (B) I = II and (C) I > II in Figs. 7.

Theorem 3.12. Suppose that (4)—(6) and (24) hold. Assume a > 1, > 0, py
is a nontrivial solution pair of (7) and determines p as in (le), and the function
[f(p)—B(p—p)] has exactly three zeros in (0,1) as shown in Fig.6 with p;. = p1 and
I > II. Then for every 01 > 0, problem (1) has a unique cline, which is strictly
ncreasing.

Proof. From Figs. 7(B,C), we see that the phase portrait of the orbit that tends to
ps+ is qualitatively the same as in Fig. 1(A), whence with Remark 3, the conclusion
in Theorem 3.12 follows from the same arguments as in Theorem 3.1. O

2. py = p2-

Remark 6. We observe in either case of Fig.7, that the level curve of H™(p,0)
contains a single point py. Therefore, if py = po, there is no cline p(z) connecting
P+ as x — Foo.

3. p+ =pa.
Remark 7. In either case of Fig. 7, if p; = p3, only monotone clines may exist.
(A) I < II: We denote the curve with energy H*(ps,0) by C™ and decompose it
into
{Cr2} U{Cox}

={p,) €CT[¢20,0<p<ps}U{(p,g) €CT|¢20,p>ps}. (28)
Recall Remark 3, for every 81 > 0, the phase portrait of (18) and the image
®y_ 9, (C™) are as in Figs.1(B) and 2(A). Note that {C, 4} is not monotone now,
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which may have multiple points of intersection with ®4_ g, (C™), each of which will
produce a monotone cline connecting p+ .

(B) I = II: We denote the heteroclinic orbit emanating from (p;,0) to (ps,0)
by C*. Now for each §_ > 0, in light of (13), one may raise or lower the curve
®y_ 9, (C™) by varying 6. Let 6, be the critical value such that ®y_ g, (C~) does
not intersect C* if 6, > 6, and intersects C at two or more points if 6 < 6,.
Each such point of intersection will produce a monotone cline connecting p .

(C) I > II: We denote the orbit from (pg, 0) to (p3,0) by C*. Then the situation
is very similar to (B).

Remark 8. Here we summarize our results on clines in Theorems 3.7, 3.8, 3.11,
and 3.12; and Remarks 6 and 7. Suppose that (4)—(6) and (24) hold. Assume o > 1,
B > 0, p+ is a nontrivial solution pair of (7) and determines p as in (1e). There are
three possibilities for the cline structure of (1).

(i) If the assumptions of Theorems 3.7, 3.8(i), and 3.12 apply, then for every 4 > 0,
problem (1) has a unique cline, which is strictly increasing.

(ii) If the assumptions of Theorem 3.11 apply, then for every 81 > 0, problem (1)
has a unique cline, which is strictly increasing; and for every 6_ > 0, there exists
6. > 0 such that problem (1) has zero and at least two nonmonotone clines for
0+ >0, and 0, < 0., respectively.

(iii) If the assumptions of Theorem 3.8(ii) and Remarks 6 and 7 apply, then for
every 64 > 0, problem (1) may have zero, one, or multiple clines, which, if they
exist, must be monotone.

Lastly, we apply the above results on clines to the cubic f in (3) with h €
[-1,—1/3). In this case, the cubic f satisfies (5), (6), and (24) with
1 1

11 )
p=5+ o (29)

and

p=tv Lo iz (30)

2 6h
We shall find out for what values of h, the assumption (H1) may hold so that

nonmonotone clines may exist.
Lemma 3.13. Assume that f is as in (3) with h € [-1,—1/3) and that [f(p) —
B(p — )] has three zeros p1 < py < p3 in (0,1) as in Fig.6. Then I § II if and
only if pa = p.
Proof. We first show that if po = p, then I = II. Define the line

L(p) := B(p —p) = f(p) + B(p — p); (31)

in which the “=" is due to the fact that ps = p is a zero of [f(p) — B(p — p)]. Since
P is the unique critical point of the quadratic polynomial f/(p), we see that

f'(p) = f'(2p —p). (32)
Let ¢(p) = f(p) — L(p), then (31) and (32) show that
o) =0, ¢'(p)=f(p)—B=Ff(2p—p) —B=4¢(2p—p). (33)
We conclude from (33) that ¢(p) is an odd function about p = p, which with
o(p1) = ¢(p3) = 0 reveals that p; + ps =2p and I = I1.

Next, suppose that ps < p. We denote the strict line that passes through (p1,0)
and (p, f(p)) by Li(p), and the two areas enclosed by L; and f by I’ and IT'.



MONOTONE AND NONMONOTONE CLINES 4031

Then I' = II’ as above and it is clear that I < I’ = II' < II from the geometry
of L, Ly, and f. If po > p, we see that I > II similarly. Thus, Lemma 3.13 is
demonstrated. O

Remark 9. From Lemmas 3.10 and 3.13 and Theorem 3.11, we conclude that for
the cubic (3) with h € [-1,—-1/3):

(i) If a straight line B(p — p) with 8 > 0 and p € (0, 1) intersects with the graph of
f(p) at p1,pa, and ps such that 0 < p; < pa < p < p3 < 1, then system (15) has a
homoclinic orbit as in Fig. 7(A).

(ii) If, in addition, 2p — p; > 0, then we take p, = p1, p— = 2p — p1, and
o= fp)/ ().

(iii) If the conditions in (i) and (ii) hold, then for suitable f+ > 0, system (1) has
nonmonotone solutions.

(iv) For every p; € (0,p), let p(p1) be the p-intercept of the line that passes through
(o1, £ (1)) and (5, £ (7). 1

(H2) there exists some p; € (0, p) such that 2p(p1) — p1 > 0,

then we can choose this p;, and take ps slightly smaller than p such that the line
that passes through (p1, f(p1)) and (p2, f(p2)) satisfies the above (i) and (ii). It is
clear that (H2) is also a necessary condition such that (i) and (ii) hold.

Lemma 3.14. Assume that f is as in (3) with h € [-1,—1/3). Then (H2) holds
if and only if h < —(5 +V/17)/12.

Proof. For every p; € (0,p), by the definition of p(p;) in Remark 9(iv), we obtain

_ I & S
p(p1) = p1 o0 =D _f(p)f(p1)~ (34)
Let w(p1) := 2p(p1) — p1; from (3) and (34) we see that
o PL—p _ _pi(p —p)
w(p1) =p1 2f(p1) — f(]ﬁ)ﬂpl) Flp) — f(v)w(m), (35)
where
Vlpr) = <2k} + (th + gy - L (36)

Since f is monotone for p; € (0,p), we see from (35) that w(p;) > 0 is equivalent
o ¥ (p1) > 0. Observe that for every h € [—1,—1/3), the quadratic polynomial 1

is concave up and
. 1 1 2
w(p)__§h+].87h_§ < 0.
Then there exists p; € (0,p) such that ¥(p;) > 0 if and only if

18h% + 15h + 1
¥(0) = o -

which means h < —(5 4+ /17)/12. O

0,

Lemma 3.15. Assume that f is as in (3) with h € [—-1,—1/3). For every o > 1
and every B > 0, if (le) and (7) hold with 0 < p_ < py < 1, then the following
cases cannot happen.

(i) The function [f(p) — B(p — )] has two zeros as in Fig. 5(A) with py = pa, i.e.,
Case (iid) in Remark 4.
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(ii) The function [f(p) — B(p — D)] has three zeros as in Fig.6 with p; = pa.
(iii) The function [f(p) — B(p — p)] has three zeros as in Fig.6 with py = ps.

Proof. For each case, we argue by contradiction.

Suppose rather that (i) happens. Consider the straight line passing through

(p, f(p)) with slope f’(p), the p-intercept of which is

_ [

P=P= )y (37)
From Remark 4(ii) and Fig. 5(A), we inform that p; = ps > p and 8 = f/(p2) <
f'(p), which imply p < p. Thus, from (1e), (3), (37), and f'(p) > 0 we have

; 55 20 _ p2hp — (1+h)]
p-=2p—py <20—Pp=p 70) ) <0 (38)

for every h € [—1,—1/3), which contradicts p— > 0 and demonstrates that (i)
cannot happen.

Suppose rather that (i) happens. If py = ps > p, from Remark 5 we see that
p1 < p. Then the same calculations as in (i) would lead to the contradiction p_ < 0.
If p+ = ps2 < P, we consider the straight line passing through (p2, f(p2)) with slope
f'(p2), the p-intercept of which is

f(p2)
f(p2)
Since f is concave up on (0,p), the slope 3 of the secant line through (p1, f(p1))
and (ps, f(p2)) satisfies 8 < f’(p2), and thus p < p,.. Therefore, from (le), (3),
(39), and f'(p2) > 0 we have

P« = P2 — (39)

2f(p2) _ p2 [2hp3 — (h +1)]
f'(p2) f'(p2)

for every h € [—1,—1/3), which contradicts p_ > 0. Thus, in either case, (ii) cannot
happen.

Suppose that (iii) happens. Then as in (i) we consider the straight line passing
through (p, f(p)) with slope f’(p), the p-intercept of which is the p given by (37).
In light of Remark 5, we see that p; < p and py = p3 > p. Since f’ achieves its
maximum at p = pin (0, 1), we see that 5 < f'(p); otherwise, 8 > f/(p) would imply
that 8(p — p) > f(p) for p € (p1, 1), which contradicts our assumption that [f(p) —
B(p — p)] has two more zeros pa, p3 in (p1,1). Hence, B < f'(p) and consequently,
the corresponding p-intercepts satisfy p < p. Then the same calculations as in (38)
lead to the contradiction p_ < 0. Thus, (iii) cannot happen. O

p—=2p—py <2p —p2=p2— <0 (40)

The following theorem in [27] describes multiplicity of nontrivial solutions of (7),
in which the j, is as in (22).

Theorem 3.16. ([27, Th.8.3(ii)]) Assume that f is as in (3) with h € [-1,—1/3),
then for every a > 1, there exists (3 (> Bs«) such that for every 8 in (5,00), m
(0, Bs] U{/S’}, and in (Bx, ), the system (7) has exactly zero, one, and two solutions,
respectively. In particular, if h = —1, then B, = 0, and hence for every p in (B, 00),
n {B}, and in (0, B), system (7) has exactly zero, one, and two nontrivial solutions,
respectively.

Now we come to the following results on clines for the cubic (3) with h €
[-1,—-1/3).
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FIGURE 9. Nonmonotone cline with f(u) = 2u?(1 — u).

Theorem 3.17. Assume that f is as in (3) with h € [—(5 + V17)/12,—1/3).
Then for every o > 1, there exists (> B«) such that for every f in (B,oo), n
(0, B« U {B}, and in (6*,3), and for every 0+ > 0, problem (1) has ezactly zero,
one, and two clines with 0 < p_ < p4 < 1, respectively. Moreover, every cline is

strictly increasing.

Proof. For every a > 1, f > 0, Theorem 3.16 gives the exact number of pi that
satisfies (7) and 0 < p_ < p4 < 1. For each such pair of py and the corresponding p
as in (le), Remark 8 lists all the possible cline structure of (1). For f as in (3) with
h € [—(5 + V/17)/12,—1/3), Cases (ii) in Remark 8 cannot happen by Remark 9
and Lemma 3.14. Cases (iii) in Remark 8 is excluded by Lemma 3.15. This leaves
only Case (i) in Remark 8, i.e., the existence of a unique monotone cline for every
0+ > 0. O

Theorem 3.18. Assume that f is as in (3) with h € [~1,—(5++/17)/12). Then for
every o > 1, there exists f3 (> B«) such that for every 8 in (B, 00), in (0, 8] U {B},
and in (,8*,5), and for every 0L > 0, problem (1) has exactly zero, one, and two
strictly increasing clines, respectively. Moreover, there exist o > 1 and 8 > 0, such
that for every 6_ > 0, there exists 6, > 0 and problem (1) has zero and at least two

nonmonotone clines with 0 < p_ < py <1 for 04 > 6, and 0, < 0., respectively.

Proof. The proof of this theorem is similar to the one of Theorem 3.17, except that
for h € [-1,—(5 + V/17)/12), there exist o > 1, 8 > 0, p+, and p such that Case
(ii) in Remark 8 happens by Remark 9 and Lemma 3.14. Ounce this happens, the
existence of nonmonotone clines in addition to a unique monotone one follows from
Theorem 3.11. O

We close this section with the following numerical example of a nonmonotone
cline of (1).

Example 1. Fig.9 shows a numerically solved nonmonotone solution of (1) for the
complete dominance case f(u) = 2u?(1 —u) (i.e., h = —1 in (3)) with a = 59.44,
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B = %, 0_ = 5.23437, and 0, = 0.111373; the corresponding p_ =~ 0.017 and
pe ~ 0.148.

First, p = 1/12, 8, p+, and « are determined in turn such that assumption (H1)
in Theorem 3.11 and af (p—) = f(p+) hold. Second, we choose ((p(0+), ¢(0+)) and
((p(0—),q(0—)) with energy H* (p4,0) and H, (p_,0), respectively, and determine
the corresponding 64 according to (le,f). Lastly, we solve the first order ODE
system (15) forward with initial value (p(0+),¢(0+4)) for > 0, and solve system
(18) backward with initial value (p(0—),¢(0—)) for x < 0, using the Symplectic
Partitioned Runge-Kutta Method in Mathematica.

4. Clines with p_ = p,. By Proposition 1, it is possible that p_ = py = 0 or
p— = py = 1. The previous studies show that under a step-environment with
partial panmixia, they would imply that p(z) = 0 or p(x) = 1, respectively; see [27]
(without a barrier) and [16] (with the presence of a barrier). Here, under certain
conditions, we discover the existence of nonmonotone clines of (1) withp_ =p; =0
or p_ =py = 1.

We focus on unimodal selection functions f described by (6) that satisfy either
(23) or (24) as in Section 3. We first consider nonmonotone clines of (1) with
p— =p+ =0.

Theorem 4.1. Assume that o > 0 and that (4)—(6) hold. Then in each of the
following cases, for every 6L > 0, problem (1) has no cline with p— = py = 0.

(i) f satisfies (23) and 5 > 0.

(ii) f satisfies (24) and B € (0, 51] U [B2, 00), where 51 = f'(0) and Bs is the unique
slope such that the line Bap is tangent to the graph of f(p).

Proof. We use the phase-plane analysis again. The phase portrait for x < 0 is
similar to the one in Fig. 1(B) with p_ being the origin now. We observe that
under the conditions in either (i) or (ii), the line Sp may have at most one point of
intersection with the graph of f(p) besides the origin, which determines the phase
portrait for x > 0 in a simple way. Consequently, in either case, the trivial solution
p(z) = 0 is the only solution with p(+oo) = 0. We omit the details here, since the
method is essentially the same as the proof of Theorem 3.1. O

Remark 10. If f satisfies (5), (6), and (24), then by the definition of 8; and So
in Theorem 4.1(ii), we see that for every 8 € (f51,02), the line Sp and the graph
of f(p) have two points of intersection besides the origin. The situation is exactly
the same as in Fig.6 with p_ being the origin now. I and I stand for the two
areas bounded by the line 8p and the graph of f(p) as in Fig.6. It is clear that
there exists a unique 3 € (81, 32) such that I < IT if and only 8 < 3. Similarly to
Lemma 3.10, we have the following lemma.

Lemma 4.2. Assume that [ satisfies (5), (6), and (24).

(i) If B € (B1, ), then the phase portrait of (15) with p =0 is as in Fig.7(A) with
p1 being the origin; there exists a homoclinic orbit joining the equilibrium (p1,0)
and itself.

(ii) If p = B, then the phase portrait of (15) with p = 0 is as in Fig. 7(B) with py
being the origin; there exist heteroclinic orbits connecting the equilibria (p1,0) and
(p3,0). :

(iii) If B € (B, P2), then the phase portrait of (15) with p = 0 is as in Fig. 7(C) with
p1 being the origin; there exists a homoclinic orbit joining the equilibrium (ps,0)
and itself.
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Theorem 4.3. Assume that o > 0 and that (4)—-(6) and (24) hold.

(i) If B € (51,5), then for every 0_ > 0, there exists 0, > 0 such that problem (1)
has zero and at least two nonmonotone clines with p_ = py =0 for 84 > 0, and
04 < 0., respectively. (ii) If B € [B,Bg), then for every 64 > 0, problem (1) has no

cline with p_ = py =0.

The proof of Theorems 4.3(i) and 4.3(ii) is essentially the same as the proof of
Theorems 3.11 and 3.12, respectively, and hence is omitted here.

Remark 11. We can obtain the corresponding theory on clines with p_ =py =1
from the above results for p_ = p; = 0 via the transformation 1 —p(—2z) introduced
at the beginning of Section 3. The similar assumptions as (23) and (24) should be
made on f in (p,1) instead of in (0, p).

Now we apply the above results to the cubic (3).

Theorem 4.4. Assume that o > 0 and that (3) and (4) hold.

(1) If h € [-1/3,1], then for every 8 > 0 and every 61 > 0, problem (1) has no
cline with p_ = p4 = 0.

(ii) If h € [~1,—1/3), then there exists 3 > By such that (a) for every B € (0,31] U
[B,oo) and every 04 > 0, problem (1) has no cline with p_ = py = 0; and (b)
for every B € (ﬂl,B) and every 0_ > 0, there exists 0, > 0 such that problem (1)
has zero and at least two nonmonotone clines with p_ = py =0 for 0, > 0, and
0 < 0., respectively, where f1 =1+ h.

Proof. By (3) and straightforward calculations, we infer that f satisfies (23) and
(24), provided h € [-1/3,1] and h € [—1, —1/3), respectively. We note that f'(0) =
1+ h. Then Theorem 4.4(i) follows from Theorem 4.1(i); Theorem 4.4(iia) follows
from Theorems 4.1(ii) and 4.3(ii); Theorem 4.4(iib) follows from Theorem 4.3(i). O

Theorem 4.5. Assume that o > 0 and that (3) and (4) hold.

(i) If h € [—1,1/3], then for every B > 0 and every 61 > 0, problem (1) has no
cline with p_ =py = 1. } 3

(ii) If h € (1/3,1], then there exists § > 1 such that (a) for every B € (0, 31]U[B, 00)
and every 04 > 0, problem (1) has no cline with p— = py = 1; and (b) for every
RS (,5’173) and every O > 0, there exists 0, > 0 such that problem (1) has zero
and at least two nonmonotone clines with p— = py =1 for 6_ > 0. and 6_ < 0.,
respectively, where 1 =1 — h.

Proof. Remark 11, Theorem 4.4, and the fact f/(1) = h — 1 imply Theorem 4.5
directly. O

5. Discussion. In this paper, we investigated the cline model (1) in an unbounded
linear habitat. The crucial assumptions are step-environment ¢g(z) and unimodal
selection f(p).

In previous models on clines maintained by a step-environment and a unimodal
selection function, clines are all monotone; see [4] (without partial panmixia and a
barrier), [27] (with partial panmixia), and [16] (with partial panmixia and a barrier).
As a consequence there exists no cline p(z) with p_ = py, where p1 = p(+00). Our
results differ dramatically from the previous ones: we discover nonmonotone clines
with p_ < p4 (Theorem 3.11(ii)) and with p_ = p; (Theorem 4.3(i)).

Our general theorems extend the analysis of Nagylaki [16] for model (1) from
the no dominance case f(u) = u(1l — u) to unimodal f for « = 1 (Theorem 3.1); to
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unimodal f which is concave on the left of its maximum for @ > 1 (Theorem 3.4);
and to unimodal f which has only one point of inflection on the left of its maximum
for o > 1 (theorems summarized in Remark 8). The results on clines for o < 1 can
be obtained from the results for @ > 1 through the transformation 1 — p(—x).

In particular, we obtain the complete cline structure for the biological important
cubic f in (3): The configuration of clines with p_ < p; is established in Remark 1
for « = 1, and in Remark 2 and Theorems 3.17 and 3.18 for a > 1, respectively.
The configuration of clines for @« > 0 with p_ = p;y = 0 and 1 is established in
Theorems 4.4 and 4.5, respectively.

Now we posit some unsolved problems.

First, the frequencies p(0+£) at the barrier are important characteristics of a cline
p(x). Therefore, it is desirable to do the approximations at the barrier in various
limiting cases of the parameters «, 5, and 6+ for the selection functions that we
investigated in this paper as in [16, Sect. 4.3] for f(u) = u(1 — ).

Second, it will be much more challenging to study the stability of the clines with
respect to the corresponding time-dependent model.

Lastly, if we allow more points of inflection on the left of p instead of only one
as in (24), how complex will the cline structure be? Another generalization is g(x)
having two steps or being a continuous monotone function instead of a single step
as in (4).
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