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a b s t r a c t

Analysing the fractional τ -norm, the uniform convergence of the V-cycle multigrid
FEM for the time-dependent fractional problem is strictly proved when τ → 0. The
numerical experiments are performed to verify the convergence with O(N logN)
complexity by fast Fourier transform method.
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1. Introduction

In this paper we study the V-cycle multigrid FEM for solving the time-dependent fractional problem
whose prototype is [1], for 1 < α < 2,

∂u

∂t
− ∇α

xu(x, t) = f(x, t) in Ω × (0, T ] (1.1)

with the initial condition u(x, 0) = u0(x), x ∈ Ω = (xL, xR) and the homogeneous Dirichlet boundary
conditions. The fractional derivative is defined by [2,3]

∇α
xu(x, t) = κα

[
xL
Dα

x + xD
α
xR

]
u(x, t), κα = − 1

2 cos(απ/2) > 0.

When considering iterative solvers for the large-scale linear systems arising from the approximation of
elliptic partial differential equations (PDEs), multigrid methods (MGM) are often optimal order process
[4,5]. The elegant theoretical framework and uniform convergence of V-cycle MGM for second order elliptic
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equation is well established in [5,6]. The convergence rate independent of the number of levels is presented by
multigrid FEM for elliptic equations with variable coefficients [7]. In the case of multilevel matrix algebras
with special prolongation operators, the convergence rate of the V-cycle MGM is derived in [8] for the elliptic
PDEs. Using the traditional (simple) prolongation operator, for the time-dependent second elliptic problems,
the new convergence proofs for V-cycle MGM including multilevel linear systems are given in [9]. For the
time-independent fractional PDEs, based on the idea of [5,10], the convergence rate of the V-cycle MGM
is discussed in [11–13] and the nearly uniform convergence result is derived in [14]. For the time-dependent
fractional PDEs, the convergence rate of the two-grid method has been performed in [1,15] by following the
ideas in [16]; and the convergence of the V-cycle MGM is investigated with a fixed time step τ > 0 [17].

However, for τ → 0, as far as we know, the convergence rate of the V-cycle multigrid FEM has not been
considered for a time-dependent PDEs. In this paper, based on introducing and analysing the fractional
τ -norm, the convergence rate of the V-cycle MGM is strictly proved. Moreover, the fast Toeplitz matrix–
vector multiplication is utilized to lower the computational cost with only O(N logN) complexity by fast
Fourier transform (FFT) method [15,18], where N is the number of the grid points.

The outline of the paper is as follows. In the next section, we briefly review the full discretization
scheme of the time-dependent problem (1.1). In Section 3, we first define the fractional τ -norm and prove
the convergence estimates of the V-cycle MGM with time-dependent fractional PDEs. The numerical
experiments are reported in Section 4. Finally, we conclude the paper with some remarks.

2. Preliminaries

Define the bilinear form b: Hα/2
0 (Ω) ×H

α/2
0 (Ω) → R as [2]

b(u, v) = −2κα

(
xL
Dα/2

x u, xD
α/2
xR

v
)
. (2.1)

Let Vk denote C0 piecewise linear functions with the uniform meshes hk = 1
2hk−1, i.e. Vk−1 ⊂ Vk, k ≥ 1,

and tn = nτ , n = 0, 1, . . . , N , τ = T
N is time step. Then the full-discretizaion problems with the

Crank–Nicolson scheme in time direction is: Find un
k ∈ Vk such that

aτ (un
k , v) = (gn−1, v) ∀v ∈ Vk, (2.2)

where (gn−1, v) = τ−1(un−1
k , v) − 1

2b(u
n−1
k , v) + (fn−1/2

k , v), and

aτ (w, v) = τ−1(w, v) + 1
2b(w, v), v, w ∈ Vk. (2.3)

The operator Ak,τ : Vk → Vk and gn−1
k : Vk → Vk are defined by

(Ak,τw, v)k = aτ (w, v), (gn−1
k , v)k = (gn−1, v) ∀v, w ∈ Vk. (2.4)

Here the mesh-dependent inner product is defined by [10]

(w, v)k := hk

nk∑
i=1

w(pi)v(pi), v, w ∈ Vk,

and {pi}nk
i=1 is the set of internal vertices.

From (2.2) and (2.4), we obtain

Ak,τz = g, g := gn−1
k ∈ Vk, z := un

k ∈ Vk. (2.5)

Since Ak,τ is symmetric positive definite with respect to (·, ·)k, we can define a scale of mesh-dependent
norms ||| · |||s,k,τ in the following way

|||v|||s,k,τ :=
√

(As
k,τv, v)k. (2.6)
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Lemma 2.1 ([2]). The bilinear form b(·, ·) is coercive and continuous on Hα/2
0 (Ω)×Hα/2

0 (Ω) with 1 < α < 2,
i.e. there exists a constant such that

b(u, u) ≥ C0∥u∥2
H

α/2
0 (Ω)

, |b(u, v)| ≤ C1∥u∥
H

α/2
0 (Ω)

∥v∥
H

α/2
0 (Ω)

.

3. Uniform convergence of V-cycle multigrid FEM for (2.2)

The time-dependent fractional MGM can be treated as the elliptic equations arising at a fixed time step
τ > 0 [17]. However, the bilinear form aτ (w, v), see (2.3), is unbounded in the traditional norm when the
time step τ → 0. To overcome this gap, we below introduce the fractional τ -norm.

Definition 3.1. Let Pk : Hα/2
0 (Ω) → Vk be the orthogonal projection with respect to aτ (·, ·), i.e.

aτ (v, w) = aτ (Pkv, w) ∀w ∈ Vk. (3.1)

Let Kk be the iteration matrix of the smoothing operator. Here, we take Kk to be the weighted (damped)
Jacobi iteration matrix

Kk = I − SkAk,τ , Sk := Sk,η = ηD−1
k,τ (3.2)

with a weighting factor η ∈ (0, 1/2], and Dk,τ is the diagonal of Ak,τ . A multigrid process can be regarded
as defining a sequence of operators Bk : Vk ↦→ Vk which is an approximate inverse of Ak,τ in the sense
that ∥I − BkAk,τ ∥ is bounded away from one [9]. The V-cycle multigrid algorithm [5,10] is provided in
Algorithm 1.

Algorithm 1 V-cycle Multigrid Algorithm: Define B1 = A−1
1,τ . Assume that Bk−1 : Vk−1 ↦→ Vk−1 is defined.

We shall now define Bk : Vk ↦→ Vk as an approximate iterative solver for the equation Ak,τz = g.
1: Pre-smooth: Let Sk,η be defined by (3.2), z0 = 0, l = 1 : m1, and zl = zl−1 + Sk,ηpre(gk −Ak,τzl−1).
2: Coarse grid correction: Denote ek−1 ∈ Vk−1 as the approximate solution of the residual equation
Ak−1e = Ik−1

k (g −Ak,τzm1) with the iterator Bk−1: ek−1 = Bk−1I
k−1
k (g −Ak,τzm1).

3: Post-smooth: zm1+1 = zm1 + Ik
k−1e

k−1, l = m1 +2 : m1 +m2 +1, and zl = zl−1 +Sk,ηpost(g−Ak,τzl−1).

4: Define MG(k, z0, g) := Bkg = zm1+m2+1.

Based on the (2.3), we define the fractional τ -norm

∥v∥2
τ,α = τ−1∥v∥2

L2(Ω) + ∥v∥2
Hα(Ω) ∀v ∈ Hα(Ω). (3.3)

In order to estimate the spectral radius, ρ(Ak,τ ), of Ak,τ , we first introduce the following lemmas.

Lemma 3.1. The bilinear form aτ (u, v) is symmetrical, continuous and coercive. In other words, there exist
two positive constants C2, C3 such that

aτ (u, u) ≥ C2∥u∥2
τ,α/2 and |aτ (u, v)| ≤ C3∥u∥τ,α/2∥v∥τ,α/2.

Proof. According to (2.3) and Lemma 2.1, there exists

aτ (u, u) = τ−1(u, u) + 1
2b(u, u) ≥ τ−1(u, u) + C0

2 ∥u∥2
Hα/2(Ω) ≥ C2∥u∥2

τ,α/2
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with C2 = min{1, C0/2}. On the other hand, using Lemma 2.1, we have

|aτ (u, v)| ≤ τ−1|(u, v)| + 1
2 |b(u, v)| ≤

(
1 + 1

2C1

)(
τ−1∥u∥L2(Ω)∥v∥L2(Ω) + ∥u∥Hα/2(Ω)∥v∥Hα/2(Ω)

)
≤
(

1 + 1
2C1

){(
τ−2∥u∥2

L2(Ω)∥v∥2
L2(Ω) + ∥u∥2

Hα/2(Ω)∥v∥2
Hα/2(Ω)

)
+τ−1∥u∥2

L2(Ω)∥v∥2
Hα/2(Ω) + τ−1∥v∥2

L2(Ω)∥u∥2
Hα/2(Ω)

}1/2

=
(

1 + 1
2C1

)
∥u∥τ,α/2∥v∥τ,α/2.

The proof is completed. □

According to (2.6), (3.3) and Lemma 3.1, it is easy to get

c∥v∥L2(Ω) ≤ |||v|||0,k,τ ≤ C∥v∥L2(Ω),

c∥v∥τ,α/2 ≤ |||v|||1,k,τ ≤ C∥v∥τ,α/2,

c∥Ak,τv∥L2(Ω) ≤ |||v|||2,k,τ ≤ C∥Ak,τv∥L2(Ω).

(3.4)

Lemma 3.2 ([19]). Let s1 < s2 be two real numbers, and µ = (1 − θ)s1 + θs2 with 0 ≤ θ ≤ 1. Then there
exists a constant such that ∥v∥µ ≤ C∥v∥1−θ

s1 ∥v∥θ
s2 ∀v ∈ Hs2(Ω).

Lemma 3.3. Let Ak,τ be defined by (2.4). Then there exists a constant such that

ρ(Ak,τ ) ≤ C(1 + τ−1hα)h−α.

Proof. From Lemmas 2.1, 3.2 and inverse estimation of [19], there exists

b(v, v) ≤ C1∥v∥2
Hα/2(Ω) ≤ C1

(
C2∥v∥1−α/2

L2(Ω) · ∥v∥α/2
H1(Ω)

)2

≤ C1

(
C2∥v∥1−α/2

L2(Ω) · h−α/2∥v∥α/2
L2(Ω)

)2
≤ C3h

−α∥v∥2
L2(Ω).

Let Λ be an eigenvalue of Ak,τ with eigenvector v. From the above equation, (3.4) and Lemmas 3.1, 2.1, we
have

Λ(Ak,τ ) = (Ak,τv, v)k

(v, v)k
= aτ (v, v)

(v, v)k
≤
C4∥v∥2

τ,α/2

∥v∥2
L2(Ω)

≤
C5

(
τ−1∥v∥2

L2(Ω) + b(v, v)
)

∥v∥2
L2(Ω)

≤ C(1 + τ−1hα)h−α.

The proof is completed. □

Lemma 3.4. Let Ak,τ = {ai,j}nk
i,j=1 be defined by (2.5). Then

η

ρ(Ak,τ ) (νk, νk) ≤ (Skνk, νk) ≤ (A−1
k,τνk, νk) ∀νk ∈ Vk,

where Sk = ηD−1
k,τ , η ∈ (0, 1/2] and Dk,τ is the diagonal of Ak,τ .

Proof. It is easy to check that Ak,τ is a weakly diagonally dominant symmetric Toeplitz M-matrix [1,20],
i.e., Ak,τ is a positive definite matrix with positive entries on the diagonal and nonpositive off-diagonal
entries and the diagonal element of a matrix is at least as large as the sum of the off-diagonal elements in
the same row or column [18]. Then the similar arguments can be performed as Lemma 2.4 of [9], the desired
result is obtained. □
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Remark 3.1. We conclude that, for the fractional problem (1.1), the stiffness matrix of the linear finite
element approximation on a uniform grid, after proper scaling, is equivalent to the one obtained by the finite
difference scheme.

Lemma 3.5. For any real number θ, it holds

|aτ (v, w)| ≤ |||v|||1+θ,k,τ |||w|||1−θ,k,τ ∀v, w ∈ Vk.

Proof. Let λi with 1 ≤ i ≤ nk be the eigenvalues of the operator Ak,τ and ψi be the corresponding
eigenfunction satisfying the orthogonal relation (ψi, ψj)k = δi,j . We can write v =

∑nk
i=1 ciψi, w =∑nk

j=1 djψj . From (2.4) and (2.6), we obtain

aτ (v, w) = (Ak,τv, w)k =

⎛⎝ nk∑
i=1

λiciψi,

nk∑
j=1

djψj

⎞⎠
k

=
nk∑
i=1

λicidi ≤

(
nk∑
i=1

c2
iλ

1+θ
i

)1/2( nk∑
i=1

d2
iλ

1−θ
i

)1/2

=
(
A1+θ

k,τ v, v
)1/2

k

(
A1−θ

k,τ w,w
)1/2

k
= |||v|||1+θ,k,τ |||w|||1−θ,k,τ .

The proof is completed. □

Lemma 3.6. For v ∈ H
α/2
0 (Ω), there exists a positive constant C such that

∥(I − Pk−1)v∥L2(Ω) ≤ C∥(I − Pk−1)v∥τ,α/2

(
sup
φ̸=0

{
1

∥φ∥L2(Ω)
inf

vk−1∈Vk−1
∥wφ − vk−1∥τ,α/2

})
,

where wφ ∈ H
α/2
0 (Ω) is the unique solution of aτ (ν, wφ) = (φ, ν) ∀ν ∈ H

α/2
0 (Ω).

In particular, if wφ ∈ Hα(Ω), we have

∥(I − Pk−1)v∥L2(Ω) ≤ Chα/2 (1 + τ−1hα
)1/2 ∥(I − Pk−1)v∥τ,α/2.

Proof. For vk−1 ∈ Vk−1, we have

∥(I − Pk−1)v∥L2(Ω) = sup
φ̸=0

|(φ, (I − Pk−1)v)|
∥φ∥L2(Ω)

= sup
φ̸=0

|aτ ((I − Pk−1)v, wφ)|
∥φ∥L2(Ω)

= sup
φ̸=0

|aτ ((I − Pk−1)v, wφ − vk−1)|
∥φ∥L2(Ω)

≤ sup
φ̸=0

C∥wφ − vk−1∥τ,α/2∥(I − Pk−1)v∥τ,α/2

∥φ∥L2(Ω)
.

We take the infimum over vk−1 ∈ Vk−1 to get

∥(I − Pk−1)v∥L2(Ω) ≤ C∥(I − Pk−1)v∥τ,α/2

(
sup
φ̸=0

{
1

∥φ∥L2(Ω)
inf

vk−1∈Vk−1
∥wφ − vk−1∥τ,α/2

})
.

Using the property of the interpolation operator Ih [10] and (3.3), we get

inf
vk−1∈Vk−1

∥wφ − vk−1∥2
τ,α/2 ≤ ∥wφ − Ih(wφ)∥2

τ,α/2

= τ−1∥wφ − Ih(wφ)∥2
L2(Ω)+∥wφ − Ih(wφ)∥2

Hα/2(Ω)

≤ τ−1h2α∥wφ∥2
Hα(Ω) + hα∥wφ∥2

Hα(Ω) ≤ C1h
α
(
1 + τ−1hα

)
∥wφ∥2

Hα(Ω).
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According to the above equations and Assumption 4.1 of [2], there exists

∥(I − Pk−1)v∥L2(Ω) ≤ CC2h
α/2 (1 + τ−1hα

)1/2 ∥(I − Pk−1)v∥τ,α/2.

The proof is completed. □

Lemma 3.7. There exists a constant such that

∥(I − Pk−1)v∥τ,α/2 ≤ Chα/2(1 + τ−1hα)1/2|||v|||2,k,τ ∀v ∈ Vk.

Proof. According to (3.4), (2.6), (2.4), (3.1) and Lemmas 3.5, 3.6

∥(I − Pk−1)v∥2
τ,α/2 ≤ C1|||(I − Pk−1)v|||21,k,τ = C1(Ak,τ (I − Pk−1)v, (I − Pk−1)v)k

= C1aτ ((I − Pk−1)v, v) ≤ C1∥(I − Pk−1)v∥L2(Ω)|||v|||2,k,τ

≤ C1Ch
α/2(1 + τ−1hα)1/2∥(I − Pk−1)v∥τ,α/2|||v|||2,k,τ .

The proof is completed. □

Definition 3.2. The error operator Ek : Vk → Vk is defined recursively by

E1 = 0, Ek = Km
k [I − (I − Ek−1)Pk−1]Km

k ∀k ≥ 1,

where m = m1 = m2 is given in Algorithm 1.

Lemma 3.8. Let z, g ∈ Vk satisfy Ak,τz = g with the initial guess z0. Then

Ek(z − z0) = z − MG(k, z0, g) ∀k ≥ 1.

Proof. The similar arguments can be performed as [5,10], we omit it here. □

Lemma 3.9. aτ ((I −Kk)K2m
k v, v) ≤ 1

2maτ ((I −K2m
k )v, v).

Proof. The similar arguments can be performed as [5,10], we omit it here. □

Lemma 3.10. Let m be the number of smoothing steps and τ−1hα ≤ C with 1 < α < 2. Then

aτ (Ekv, v) ≤ C∗

m+ C∗ aτ (v, v) ∀v ∈ Vk (3.5)

where C∗ is a positive constant independent of h and τ .

Proof. Let γ = C∗

m+C∗ . We prove (3.5) by the mathematical induction. It obviously holds for k = 1 by
Definition 3.2. Assume that

aτ (Ek−1v, v) ≤ γaτ (v, v).

Next we prove that (3.5) holds. From Definition 3.2 and the above equation, it yields

aτ (Ekv, v) ≤ C2(1 − γ)∥(I − Pk−1)Km
k v∥2

τ,α/2 + γaτ (Km
k v,K

m
k v).



M. Chen, W. Qi and Y. Wang / Applied Mathematics Letters 98 (2019) 49–56 55

Table 1
MGM to solve the resulting system (2.5) with xL = 0, xR = 32, T = 1 and τ = T/N , h = xR/M , N = M .

N α = 1.1 Rate Iter CPU (s) α = 1.7 Rate Iter CPU (s)

27 2.7631e−03 13 1.29 3.2475e−03 11 0.86
28 6.9026e−04 2.0011 11 2.11 8.0166e−04 2.0183 9 1.79
29 1.7250e−04 2.0005 10 4.80 1.9810e−04 2.0168 8 4.07
210 4.2887e−05 2.0080 9 11.85 4.8927e−05 2.0175 6 8.64

According to Lemmas 3.7, 3.3 and 3.9, we get

∥(I − Pk−1)Km
k v∥2

τ,α/2 ≤ C(1 + τ−1hα)2 1
2m (aτ (v, v) − aτ (Km

k v,K
m
k v)).

Taking C∗ = CC2(1+τ−1hα)2

2 and using the above equations, the desired results are obtained. □

Theorem 3.1. Let m be the number of smoothing steps and τ−1hα ≤ C with 1 < α < 2. Then

∥z − MG(k, z0, g)∥τ,E ≤ C∗

m+ C∗ ∥z − z0∥τ,E ∀z ∈ Vk,

where the time-dependent energy norm associated with (2.3) is defined by ∥z∥τ,E =
√
aτ (z, z).

Proof. Let µi be the eigenvalues of the operator Ek and φi be the corresponding eigenfunction satisfying
the orthogonal relation aτ (φi, φj) = δi,j . Using Lemma 3.10, we obtain 0 < µ1 ≤ µ1 · · ·µnk

≤ γ, where
γ = C∗

m+C∗ is given in (3.5). Let v =
∑nk

i=1 ciφi, we have

∥Ekv∥2
τ,E = aτ (Ekv,Ekv) =

nk∑
i=1

c2
iµ

2
i ≤ γ2aτ (v, v).

From Lemma 3.8 and the above equation, the desired results are obtained. □

4. Numerical results

We employ the V-cycle MGM described in Algorithm 1 to solve the resulting system. The stopping
criterion is taken as ∥r(i)∥

∥r(0)∥
< 10−10, where r(i) is the residual vector after i iterations; and the number

of iterations (m1,m2) = (1, 1) and (ηpre, ηpost) = (1/2, 1/2). The numerical errors are measured by the L∞

norm, ‘Rate’ denotes the convergence orders. ‘CPU’ denotes the total CPU time in seconds (s) for solving
the resulting discretized systems; and ‘Iter’ denotes the average number of iterations required to solve a
general linear system Ak,τz = g at each time level.

All numerical experiments are programmed in Matlab, and the computations are carried out on a PC with
the configuration: Inter(R) Core (TM) i5-3470 CPU 3.20 GHZ and 8 GB RAM and a Windows 7 operating
system.

Let us consider the time-dependent fractional problem (1.1) with xL < x < xR, 0 < t ≤ T . Take the
exact solution of the equation as u(x, t) = e−tx2(1 − x/xR)2, then the corresponding initial and boundary
conditions are, respectively, u(x, 0) = x2(1 − x/xR)2 and u(xL, t) = u(xR, t) = 0; and the forcing function

f(x, t) = −e−tx2(1 − x/xR)2 − e−tκα

(
xL
Dα

x

[
x2(1 − x/xR)2]+ xD

α
xR

[
x2(1 − x/xR)2]) .

From Table 1, we numerically confirm that the numerical scheme has second-order accuracy and the
computational cost is almost O(N logN) operations.
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5. Conclusions

There are already some uniform convergence of V-cycle MGM to solve the time-dependent PDEs with a
fixed time step τ > 0. In this work, we introduce and analyse the fractional τ -norm, the convergence rate of
the V-cycle MGM is strictly proved when τ → 0. We remark that the corresponding theory and numerical
experiments can be extended to the time-fractional Feynman–Kac equation [9], the classical parabolic PDEs
and the multidimensional cases.
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